
Input-Output Organization 

The input-output subsystem of a computer, referred to as I/O, provides an efficient 
mode of communication between the central system and the outside environment. Programs 
and data must be entered into computer memory for processing and results obtained from 
computations must be recorded or displayed for the user. 

 
Peripheral Devices 

Input or output devices attached to the computer are also called peripherals. 
 The display terminal can operate in a single-character mode where all characters entered 

on the screen through the keyboard are transmitted to the computer simultaneously. In 
the block mode, the edited text is first stored in a local memory inside the terminal. The 
text is transferred to the computer as a block of data. 

 Printers provide a permanent record on paper of computer output data. 
 Magnetic tapes are used mostly for storing files of data. 
 Magnetic disks have high-speed rotational surfaces coated with magnetic material. 

 
Input-Output Interface 

Input-output interface provides a method for transferring information between internal storage 
and external I/O devices. Peripherals connected to a computer need special communication 
links for interfacing them with the central processing unit. The major differences are: 

1. Peripherals are electromechanical and electromagnetic devices and their manner of 
operation is different from the operation of the CPU and memory, which are electronic 
devices. Therefore, a conversion of signal values may be required. 

2. The data transfer rate of peripherals is usually slower than the transfer rate of the CPU, 
and consequently, a synchronization mechanism may be needed. 

3. Data codes and formats in peripherals differ from the word format in the CPU and 
memory. 

4. The operating modes of peripherals are different from each other and each must be 
controlled so as not to disturb the operation of other peripherals connected to the CPU. 

A typical communication link between the processor and several peripherals is shown in 
Fig.36. The I/O bus consists of data lines, address lines, and control lines. The magnetic disk, 
printer, and terminal are employed in practically any general-purpose computer. The interface 
selected responds to the function code and proceeds to execute it. The function code is referred 
to as an I/O command and is in essence an instruction that is executed in the interface and its 
attached peripheral unit. 
There are three ways that computer buses can be used to communicate with memory and I/O: 

1. Use two separate buses, one for memory and the other for I/O. 
2. Use one common bus for both memory and I/O but have separate control lines for each. 
3. Use one common bus for memory and I/O with common control lines. 



 

Isolated I/O versus Memory-Mapped I/O 

Many computers use one common bus to transfer information between memory or I/O and the 
CPU. In the isolated I/O configuration, the CPU has distinct input and output instructions, and 
each of these instructions is associated with the address of an interface register. The isolated 
I/O method isolates memory and I/O addresses so that memory address values are not affected 
by interface address assignment since each has its own address space. The other alternative is 
to use the same address space for both memory and I/O. 

 

This is the case in computers that employ only one set of read and write signals and do not 
distinguish between memory and I/O addresses. This configuration is referred to as memory- 



mapped I/O. In a memory-mapped I/O organization there is no specific input or output 
instructions. Computers with memory-mapped I/O can use memory-type instructions to access 
I/O data. 

An example of an I/O interface unit is shown in block diagram form in Fig.37. It consists of 
two data registers called ports, a control register, a status register, bus buffers, and timing and 
control circuits. The interface communicates with the CPU through the data bus. The chip 
select and register select inputs determine the address assigned to the interface. The I/O read 
and write are two control lines that specify an input or output, respectively. The four registers 
communicate directly with the I/O device attached to the interface. 

 

Asynchronous Data Transfer 

The internal operations in a digital system are synchronized by means of clock pulses supplied 
by a common pulse generator. If the registers in the interface share a common clock with the 
CPU registers, the transfer between the two units is said to be synchronous. In most cases, the 
internal timing in each unit is independent from the other in that each uses its own private 
clock for internal registers. In that case, the two units are said to be asynchronous to each 
other. This approach is widely used in most computer systems. Asynchronous data transfer 
between two independent units requires that control signals be transmitted between the 
communicating units to indicate the time at which data is being transmitted. Two way of 
achieving this: 

 The strobe: pulse supplied by one of the units to indicate to the other unit when the 
transfer has to occur. 

 The handshaking: The unit receiving the data item responds with another control signal 
to acknowledge receipt of the data. 

The strobe pulse method and the handshaking method of asynchronous data transfer are not 
restricted to I/O transfers. 

The strobe may be activated by either the source or the destination unit. Figure 38 shows a 
source-initiated transfer and the timing diagram. 

 



Fig.39 shows the strobe of a memory-read control signal from the CPU to a memory. 
 

The disadvantage of the strobe method is that the source unit that initiates the transfer has no 
way of knowing whether the destination unit has actually received the data item that was 
placed in the bus. The handshake method solves this problem by introducing a second control 
signal that provides a reply to the unit that two-wire control initiates the transfer. 

Figure 40 shows the data transfer procedure when initiated by the source. The two 
handshaking lines are data valid, which is generated by the source unit, and data accepted, 
generated by the destination unit. The timing diagram shows the exchange of signals between 
the two units. Figure 41 the destination-initiated transfer using handshaking lines. Note that the 
name of the signal generated by the destination unit has been changed to ready for data to 
reflect its new meaning. 

Asynchronous Serial Transfer 

The transfer of data between two units may be done in parallel or serial. In parallel data 
transmission, each bit of the message has its own path and the total message is transmitted at 
the same time. This means that an w-bit message must be transmitted through n separate 
conductor paths. In serial data transmission, each bit in the message is sent in sequence one at 
a time. This method requires the use of one pair of conductors or one conductor and a common 
ground. Parallel transmission is faster but requires many wires. It is used for short distances 
and where speed is important. Serial transmission is slower but is less expensive since it 
requires only one pair of conductors. Serial transmission can be synchronous or asynchronous. 
A transmitted character can be detected by the receiver from knowledge of the transmission 
rules: 

1. When a character is not being sent, the line is kept in the 1-state. 
2. The initiation of a character transmission is detected from the start bit, which is 

always(0). 
3. The character bits always follow the start bit. 
4. After the last bit of the character is transmitted, a stop bit is detected when the line 

returns to the 1-state for at least one bit time. 



  
 

An example of serial transmission format is shown in Fig. 42. 
 

As an illustration, consider the serial transmission of a terminal whose transfer rate is 10 
characters per second. Each transmitted character consists of a start bit, eight information bits, 
and two stop bits, for a total of 11 bits. Ten characters per second means that each character 
takes 0.1 s for transfer. Since there are 11 bits to be transmitted, it follows that the bit time is 
9.09 ms. The baud rate is defined as the rate at which serial information is transmitted and is 
equivalent to the data transfer in bits per second. Ten characters per second with an 11-bit 
format have a transfer rate of 110 baud. Integrated circuits are available which are specifically 
designed to provide the interface between computer and similar interactive terminals. Such a 
circuit is called an asynchronous communication interface or a universal asynchronous 
receiver-transmitter (UART). 



Modes of Transfer 

Data transfer between the central computer and I/O devices may be handled in a variety of 
modes. three possible modes: 

1. Programmed I/O: The operations are the result of I/O instructions written in the 
computer program. Each data item transfer is initiated by an instruction in the program. 
The CPU stays in a program loop until the I/O unit indicates that it is ready for data 
transfer. This is a time-consuming process since it keeps the processor busy needlessly. 
An example of data transfer from an I/O device through an interface into the CPU is 
shown in Fig. 43. 

 

2. Interrupt-initiated I/O: It can be avoided by using an interrupt facility and special 
commands to inform the interface to issue an interrupt request signal when the data are 
available from the device. In the meantime the CPU can proceed to execute another 
program. This method of connection between three devices and the CPU is shown in 
Fig. 44. 

 

3. Direct memory access (DMA): the interface transfers data into and out of the memory 
unit through the memory bus. The CPU initiates the transfer by supplying the interface 
with the starting address and the number of words needed to be transferred and then 
proceeds to execute other tasks. This method of connection between devices and the 
memory is shown in Fig. 45. 



 
 

Pipelining 

Pipelining is a technique of decomposing a sequential process into sub-operations; with 
each sub-process being executed in a special dedicated segment that operates concurrently 
with all other segments. A pipeline can be visualized as a collection of processing segments 
through which binary information flows. 

General Considerations 

Any operation that can be decomposed into a sequence of sub-operations of about the same 
complexity can be implemented by a pipeline processor. The general structure of a four- 
segment pipeline is illustrated in Fig. 46. The operands pass through all four segments in a 
fixed sequence. 

 

The space-time diagram of a four-segment pipeline is demonstrated in Fig47. 
 

The speedup(S) of a pipeline processing over an equivalent non-pipeline processing is 

defined by the ratio: 𝑆 =
 𝑛𝑡𝑛          

 
(𝑘+𝑛−1)𝑡𝑝 



As the number of tasks increases, n becomes much larger than 𝑘 − 1, and 𝑘 + 𝑛 − 1 
approaches the value of n. Under this condition, the speedup becomes: 

𝑆 = 
𝑡𝑛

 

𝑡𝑝 

numerical example: Let the time it takes to process a sub-operation in each segment be 
equal to 𝑡𝑝= 20 ns. Assume that the pipeline has 𝑘 = 4 segments and executes 𝑛 = 100 
tasks in sequence. The pipeline system will take 

(𝑘 + 𝑛 − 1)𝑡𝑝 = (4 + 99) × 20 = 2060𝑛𝑠 

to complete. Assuming that t = ktp = 4 x 20 = 80 ns, 

a non-pipeline system requires: 

𝑛𝑘𝑡𝑝 = 100 × 80 = 8000𝑛𝑠 

to complete the 100 tasks. The speedup ratio is equal to: 

8000⁄2060 = 3.88 

Instruction Pipeline 

The computer needs to process each instruction with the following sequence of steps: 

1. Fetch the instruction from memory. 

2. Decode the instruction. 

3. Calculate the effective address. 

4. Fetch the operands from memory. 

5. Execute the instruction. 

6. Store the result in the proper place. 

Figure 48 shows how the instruction cycle in the CPU can be processed with a four-segment 
pipeline. While an instruction is being executed in segment 4, the next instruction in sequence 
is busy fetching an operand from memory in segment 3. 

The four segments are represented in the flowchart: 

1. FI is the segment that fetches an instruction. 

2. DA is the segment that decodes the instruction and calculates the effective address. 

3. FO is the segment that fetches the operand. 

4. EX is the segment that executes the instruction. 



 

A pipeline operation is said to have been stalled if one unit (stage) requires more time to 
perform its function, thus forcing other stages to become idle. Consider, for example, the case 
of an instruction fetch that incurs a cache miss. Assume also that a cache miss requires three 
extra time units. 

 
Instruction-Level Parallelism 
Contrary to pipeline techniques, instruction-level parallelism (ILP) is based on the idea of 
multiple issue processors (MIP). An MIP has multiple pipelined datapaths for instruction 
execution. Each of these pipelines can issue and execute one instruction per cycle. Figure 49 
shows the case of a processor having three pipes. For comparison purposes, we also show in 
the same figure the sequential and the single pipeline case. 



 
 

Arithmetic Pipeline 

Pipeline arithmetic units are usually found in very high speed computers. They are used to 
implement floating-point operations, multiplication of fixed-point numbers, and similar 
computations encountered in scientific problems. 

an example of a pipeline unit for floating-point addition and subtraction. The inputs to the 
floating-point adder pipeline are two normalized floating-point binary numbers. 

 

A, B are two fractions that represent the mantissas and a, b are the exponents. The sub- 
operations that are performed in the four segments are: 

1. Compare the exponents. 

2. Align the mantissas. 

3. Add or subtract the mantissas. 



4. Normalize the result. 

Numerical example may clarify the sub-operations performed in each segment. For simplicity, 
we use decimal numbers, although Fig.49 refers to binary numbers. Consider the two 
normalized floating-point numbers: 

 

The two exponents are subtracted in the first segment to obtain (3 − 2 = 1). The larger 
exponent 3 is chosen as the exponent of the result. The next segment shifts the mantissa of Y 
to the right to obtain: 

 

This aligns the two mantissas under the same exponent. The addition of the two mantissas in 
segment 3 produces the sum: 

 

 



Suppose that the time delays of the four segments are 𝑡1 = 60𝑛𝑠, 𝑡2 = 70𝑛𝑠, 𝑡3 = 100𝑛𝑠, 
𝑡4 = 80𝑛𝑠, and the interface registers have a delay of 𝑡𝑟 = 10𝑛𝑠. The clock cycle is chosen to 
be 𝑡𝑝 = 𝑡3 + 𝑡𝑟 = 110𝑛𝑠 . An equivalent non-pipeline floating point adder-subtractor will 
have a delay time 𝑡𝑛 = 𝑡1 + 𝑡2 + 𝑡3 + 𝑡4 + 𝑡𝑟 = 320𝑛𝑠. In this case the pipelined adder has a 
speedup of 320/110 = 2.9 over the non-pipelined adder. 

Supercomputers 

Supercomputers are very powerful, high-performance machines used mostly for scientific 
computations. To speed up the operation, the components are packed tightly together to 
minimize the distance that the electronic signals have to travel. Supercomputers also use 
special techniques for removing the heat from circuits to prevent them from burning up 
because of their close proximity. 

A supercomputer is a computer system best known for its high computational speed, fast and 
large memory systems, and the extensive use of parallel processing. 

Delayed Branch 

Consider now the operation of the following four instructions: 
 

If the three-segment pipeline proceeds: (I: Instruction fetch, A:ALU operation, and E: Execute 
instruction) without interruptions, there will be a data conflict in instruction 3 because the 
operand in R2 is not yet available in the A segment. This can be seen from the timing of the 
pipeline shown in Fig. 50(a). The E segment in clock cycle 4 is in a process of placing the 
memory data into R2. The A segment in clock cycle 4 is using the data from R2, but the value 
in R2 will not be the correct value since it has not yet been transferred from memory. It is up 
to the compiler to make sure that the instruction following the load instruction uses the data 
fetched from memory. It was shown in Fig. 50 that a branch instruction delays the pipeline 
operation by NOP instruction until the instruction at the branch address is fetched. 

 



 
 
 


